TOTAL SYNTHESIS OF  $(\pm)$ -ATRACTYLON AND  $(\pm)$ -LINDESTRENE

Matthew C. Honan

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England.

Summary: The total synthesis of the eudesmane furanosesquiterpenes  $(\pm)$ -atractylon (1) and  $(\pm)$ -lindestrene (2) is described. Both 1 and 2 were synthesized via the methyl xanthate intermediate (10).

Atractylon (1) and lindestrene (2) are representative furanceudesmane sesquiterpenes. Atractylon (1) has been isolated from Atractylis ovata<sup>1</sup> and Atractylodes japonica<sup>2</sup>. Lindestrene (2) has been isolated from the root of Lindera strychnifolia<sup>3</sup> and from <u>Neolitsea</u> sericea<sup>4</sup>. Both  $(\pm)$ -1 and  $(\pm)$ -2 have been individually synthesized by Minato and Nagasaki<sup>5,6</sup>. Mander and co-workers<sup>7</sup> have reported that the reductive alkylation of C-tetralone derivatives leads to suitably functionalized decalins which can be used for the synthesis of germacrane sesquiterpenes<sup>8</sup>. We now report the use of this process applied to the total synthesis of two eudesmane sesquiterpenes,  $(\pm)$ -atractylon (1) and  $(\pm)$ -lindestrene (2).



Our synthesis began with the  $\alpha$ -tetralone (3)<sup>7</sup> which we have previously employed in the stereoselective synthesis of the furanogermacrane sesquiterpene sericenine<sup>8</sup>. Reductive C-methylation of 3, followed by esterification with diazomethane, gave the two diastereomeric esters (4), mp 123-125 °C, (51%) and (5), mp 89-90 °C, (14%)<sup>7,8</sup>. Reduction of 4 with sodium borohydride, followed by hydrolysis of the methyl enol ether with oxalic acid, gave exclusively the  $\beta$ -alcohol (6), mp 108 °C, (90% overall). Hydrogenation of 6 with palladium-on-carbon yielded both the <u>cis</u>-decalin (7), mp 91-94 <sup>O</sup>C, (29%) and the



(a) K0<sup>t</sup>Bu, <sup>t</sup>BuOH, K, NH<sub>3</sub>, LiBr, THF,  $-78^{\circ}$ C; (ii) MeI, THF-H<sub>2</sub>O(1:1),  $-78^{\circ}$ C; (b) CH<sub>2</sub>N<sub>2</sub>, Et<sub>2</sub>O,  $-10^{\circ}$ C, 0.5h; (c) NaBH<sub>4</sub>, EtOH,  $0^{\circ}$ C, 0.5h; (d) 0.5M (CO<sub>2</sub>H)<sub>2</sub>, rt, 0.5h; (e) H<sub>2</sub>, Pd-C, EtOH, rt; (f) (CH<sub>2</sub>OH)<sub>2</sub>, cat. <u>p</u>-TsOH, PhH, reflux; (g) (i) NaH, THF, rt, 3h; (ii) CS<sub>2</sub>, MeI, rt, 40h; (h) Bu<sub>3</sub>SnH, cat. AIBN, toluene, reflux; (i) LiAlH<sub>4</sub>, THF, rt; (j) <u>o</u>-C<sub>6</sub>H<sub>4</sub>(NO<sub>2</sub>)SeCN, <sup>n</sup>Bu<sub>3</sub>P, THF, rt, 0.5h; (k) 30% H<sub>2</sub>O<sub>2</sub>, THF, rt, 16h; (l) 1N-HCl-THF(1:2), rt, 16h; (m) LDA, ZnCl<sub>2</sub>, MeCOCH<sub>2</sub>OTHP,  $-78^{\circ}$ C— $\rightarrow -20^{\circ}$ C; (n) cat. <u>p</u>-TsOH, THF-H<sub>2</sub>O(2:1), 60<sup>o</sup>C, 0.5h; (o) (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>, 210<sup>o</sup>C, 16h.

trans-decalin (<u>8</u>), mp 80-81 <sup>o</sup>C, (57<sub>4</sub>). The trans ring junction of <u>8</u> was established by X-ray crystallographic analysis on the crystalline tosylate of <u>8</u>. The ketone group of <u>8</u> was protected as the ethylene ketal (<u>9</u>), (81%). Treatment of the generated sodium alkoxide of <u>9</u> with carbon disulphide and methyl iodide yielded after 40 hr at room temperature the methyl xanthate (<u>10</u>), mp 134-136 <sup>o</sup>C, (80%).

The methyl xanthate (<u>10</u>) was chosen as our common intermediate in the synthesis of (<u>+</u>)-<u>1</u> and (<u>+</u>)-<u>2</u>, since it allowed for either the deoxygenation<sup>9</sup> at C<sub>4</sub> or the formation of a double bond at C<sub>3</sub>-C<sub>4</sub><sup>10</sup>.

Reduction of <u>10</u> with tributyltin hydride in refluxing toluene in the presence of a catalytic amount of azobisisobutyronitrile (AIBN) gave the desired decalin derivative (<u>11</u>), (92%)<sup>9</sup>. Reduction of <u>11</u> with lithium aluminium hydride in THF gave the alcohol (<u>12</u>), (90%). Treatment of <u>12</u> with <u>o</u>-nitrophenylselenyl cyanide in the presence of tri-<u>n</u>-butylphosphine<sup>11</sup>, followed by oxidation with 30%  $H_2O_2$ , yielded the exocyclic alkene (<u>13</u>), (69% overall). Hydrolysis of the ketal group of <u>13</u> afforded the ketone (<u>14</u>), (80%). Aldol condensation of the generated zinc enolate of <u>14</u> with 1-tetrahydropyranyloxy-2-propanone, followed by treatment of the crude aldol adduct with a catalytic amount of <u>p</u>-toluenesulphonic acid in hot aqueous THF<sup>12</sup>, furnished (<u>±</u>)-atractylon (1) in 53% yield.

In a similar fashion,  $(\pm)$ -lindestrene  $(\underline{2})$  was synthesized from the methyl xanthate  $(\underline{10})$ . Pyrolysis of <u>10</u> in biphenyl (210 °C, 16 hr) yielded the desired alkene  $(\underline{15})$ ,  $(80\%)^{10}$ . Reduction of <u>15</u> with lithium aluminium hydride in THF gave the alcohol (<u>16</u>), (79\%). Formation of the exocyclic double bond<sup>11</sup>, followed by mild acid hydrolysis of the ketal group, afforded the ketone (<u>17</u>) in 39% overall yield. Methyl furan annulation<sup>12</sup> of <u>17</u> gave ( $\pm$ )-lindestrene (<u>2</u>) in 58% yield.

Both synthetic ( $\pm$ )-lindestrene (<u>2</u>) and ( $\pm$ )-atractylon (<u>1</u>) were completely identical in their spectral data (IR and <sup>1</sup>H-NMR) with the corresponding natural products.

<u>Acknowledgement</u>. I thank Dr. I. Horibe of the Shionogi & Co., Ltd., Japan for providing me with the IR and <sup>1</sup>H-NMR spectra of atractylon and lindestrene. I also thank the S.E.R.C., University College London and Dr. T. Cresp for their support and the X-ray crystallography department at Queen Mary College London.

## References and Notes

- 1. S. Takagi and G. Hongo, Yakugaku Zasshi, 44, 539 (1924).
- 2. H. Hikino, Y. Hikino and I. Yosioka, Chem. Pharm. Bull., 10, 641 (1962).
- 3. K. Takeda, H. Minato, M. Ishikawa and M. Miyawaki, Tetrahedron, 20, 2655 (1964).
- 4. K. Takeda, Nippon Kagaku Zasshi, 91, 675 (1970).
- 5. H. Minato and T. Nagasaki, J. Chem. Soc., Chem. Commun., 377 (1965).
- 6. H. Minato and T. Nagasaki, J. Chem. Soc. (C), 621 (1968).
- 7. J. M. Brown, T. M. Cresp and L. N. Mander, J. Org. Chem., <u>42</u>, 3984 (1977).
- 8. M. C. Honan, A. Balasuryia and T. M. Cresp, J. Org. Chem., in press.

- 9. D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin I, 1574 (1975).
- 10. H. R. Nace, Org. Reactions, 12, 57 (1962).
- 11. P. A Grieco, S. Gilman and M. Nishizawa, <u>J. Org</u>. <u>Chem.</u>, <u>41</u>, 1485 (1976).
- 12. H. Hagiwara, H. Uda and T. Kodama, J. Chem. Soc., Perkin I, 963 (1980).
- 13. All compounds have been characterized by elemental analysis and/or high resolution mass spectra. Selected spectral data are reported below: <u>6</u>: IR (CH<sub>2</sub>Cl<sub>2</sub>) 3460, 2960, 1745, 1730, 1620 cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 1.03 (3H, s, CH<sub>2</sub>), 1.54-1.94 (4H, m), 2.31 (1H, bs, OH), 2.49 (1H, d, J<sub>5.5</sub>, = 13.3 Hz, H-5), 2.63 (1H, dd, J<sub>5',5</sub> = 13.3 Hz, J<sub>5',7</sub>, = 1.5 Hz, H-5'), 2.71-3.02 (2H, m, H-7,7'), 3.13-3.19 (1H, m, H-1), 3.56 (1H, dd,  $J_{4,3} = 11.2$  Hz,  $J_{4,3} = 4.2$  Hz, H-4), 3.71 (3H, s, OCH<sub>3</sub>), 5.20 (1H, dt,  $J_{8,1} = 2.0$  Hz,  $J_{8,7} = J_{8,7} = 3.7$  Hz, H-8); mass spectrum, m/e, M<sup>+</sup>, 238.1211. C<sub>13</sub>H<sub>18</sub>O<sub>4</sub> requires, M<sup>+</sup>, 238.1205. <u>14</u>: IR (CH<sub>2</sub>Cl<sub>2</sub>) 2950, 1700, 1640, 910 cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$  0.69 (3H, d, J = 0.6 Hz), 1.22-2.46 (13H, m), 4.50 (1H, d, J = 1.5 Hz), 4.81 (1H, d, J = 1.5 Hz) ; mass spectrum, m/e, M<sup>+</sup>, 178.1354. C<sub>12</sub>H<sub>18</sub>0 requires, M<sup>+</sup>, 178.1538 ; microanalysis, calcd. for C<sub>12</sub>H<sub>18</sub>0: C 80.85, H 10.18. Found: C 80.66, H 10.38. <u>17</u>: IR (CH<sub>2</sub>Cl<sub>2</sub>) 2940, 1710, 1650, 1610, 910 cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>2</sub>)  $\delta$  0.74 (3H, d, J = 0.8 Hz), 1.60-2.61 (7H, m), 2.73-3.01 (2H, m), 4.67 (1H, bs), 4.93 (1H, bs), 5.42 (1H, dt, J = 9.7, 2.1 Hz), 5.57 (1H, dt, J = 9.7, 3.7 Hz); mass spectrum, m/e,  $M^+$ , 176.1196. C<sub>12</sub>H<sub>16</sub>0 requires, M<sup>+</sup>, 176.1201.

(Received in UK 24 October 1985)